Author:
Riaz Muhammad Bilal,Saeed Syed Tauseef
Abstract
<p style='text-indent:20px;'>This article is focused on the slip effect in the unsteady flow of MHD Oldroyd-B fluid over a moving vertical plate with velocity <inline-formula><tex-math id="M1">\begin{document}$ U_{o}f(t) $\end{document}</tex-math></inline-formula>. The Laplace transformation and inversion algorithm are used to evaluate the expression for fluid velocity and shear stress. Fractional time derivatives are used to analyze the impact of fractional parameters (memory effect) on the dynamics of the fluid. While making a comparison, it is observed that the fractional-order model is best to explain the memory effect as compared to the classical model. The behavior of slip condition as well as no-slip condition is discussed with all physical quantities. The influence of dimensionless physical parameters like magnetic force <inline-formula><tex-math id="M2">\begin{document}$ M $\end{document}</tex-math></inline-formula>, retardation time <inline-formula><tex-math id="M3">\begin{document}$ \lambda_{r} $\end{document}</tex-math></inline-formula>, fractional parameter <inline-formula><tex-math id="M4">\begin{document}$ \alpha $\end{document}</tex-math></inline-formula>, and relaxation time <inline-formula><tex-math id="M5">\begin{document}$ \lambda $\end{document}</tex-math></inline-formula> on fluid velocity has been discussed through graphical illustration. Our results suggest that the velocity field decreases by increasing the value of the magnetic field. In the absence of a slip parameter, the strength of the magnetic field is maximum. Furthermore, it is noted that the Atangana-Baleanu derivative in Caputo sense (ABC) is the best to highlight the dynamics of the fluid.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference31 articles.
1. T. Abdeljawad.Different type kernel h-fractional differences and their fractional h-sums, Chaos, Solitons and Fractals, 116 (2018), 146-156.
2. A. Asif, Z. Hammouch and M. B. Riaz, Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative, Eur. Phys. J. Plus, 133 (2018), 272.
3. A. Atangana.On the new fractional derivative and application to nonlinear fishers reaction-diffusion equation, Appl. Math. Comput, 273 (2016), 948-956.
4. D. Avc, M. Yavuz and N. Zdemir, Fundamental Solutions to the Cauchy and Dirichlet Problems for a Heat Conduction Equation Equipped with the Caputo-Fabrizio Differentiation. Heat Conduction: Methods, Applications and Research, , Nova Science Publishers, (eds: Jordan Hristov, Rachid Bennacer) Book Chapter, ISBN: 978-1-53614-673-8 2019, 95–107.
5. D. Avc, M. Yavuz and N. Zdemir, Fractional Optimal Control of a Diffusive Transport Acting on a Spherical Region, Methods of Mathematical Modelling: Fractional Differential Equations, Taylor and Francis Group Publishing, (eds: Harendra Singh, Devendra Kumar, Dumitru Baleanu) Book Chapter, ISBN: 978-0-367-22008-2 (2019), 63–82.
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献