Affiliation:
1. Dipartimento di Matematica "Ennio De Giorgi", Università del Salento, C.P.193, 73100, Lecce, Italy
Abstract
<p style='text-indent:20px;'>We prove <inline-formula><tex-math id="M2">\begin{document}$ L^p $\end{document}</tex-math></inline-formula> estimates for the degenerate operator <inline-formula><tex-math id="M3">\begin{document}$ \mathcal L = \Delta +c\frac{y}{|y|^2}\cdot\nabla_y-\frac{b}{|y|^{2}} $\end{document}</tex-math></inline-formula> in <inline-formula><tex-math id="M4">\begin{document}$ L^p( \mathbb{R}^{N+M},\ |y|^c\,dx\,dy) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ 1<p<\infty $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M6">\begin{document}$ x\in \mathbb{R}^N,\ y\in \mathbb{R}^M $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference17 articles.
1. P. Auscher, J. M. Martell.Weighted norm inequalities, off-diagonal estimates and elliptic operators. part I: General operator theory and weights, Advances in Mathematics, 212 (2007), 225-276.
2. L. Caffarelli, L. Silvestre.An extension problem related to the fractional Laplacian, Communications in Partial Differential Equations, 32 (2007), 1245-1260.
3. G. Calvaruso, G. Metafune, L. Negro and C. Spina, Optimal kernel estimates for elliptic operators with second order discontinuous coefficients, Journal of Mathematical Analysis and Applications, 485 (2020), 123763, 16 pp.
4. H. Dong, T. Phan.Parabolic and elliptic equations with singular or degenerate coefficients: The Dirichlet problem, Transaction of the American Mathematical Society, 374 (2021), 6611-6647.
5. H. Dong and T. Phan, Weighted mixed-norm $L_p$ estimates for equations in non-divergence form with singular coefficients: The Dirichlet problem, preprint, 2021, arXiv: 2103.08033.