Author:
Cheng Xiyou,Feng Zhaosheng,Wei Lei
Abstract
<p style='text-indent:20px;'>We consider the existence and multiplicity of nontrivial solutions for a semilinear biharmonic equation with the concave-convex nonlinearities <inline-formula><tex-math id="M1">\begin{document}$ f(x) |u|^{q-1} u $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ h(x) |u|^{p-1} u $\end{document}</tex-math></inline-formula> under certain conditions on <inline-formula><tex-math id="M3">\begin{document}$ f(x), \, h(x) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ p $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ q $\end{document}</tex-math></inline-formula>. Applying the Nehari manifold method along with the fibering maps and the minimization method, we study the effect of <inline-formula><tex-math id="M6">\begin{document}$ f(x) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ h(x) $\end{document}</tex-math></inline-formula> on the existence and multiplicity of nontrivial solutions for the semilinear biharmonic equation. When <inline-formula><tex-math id="M8">\begin{document}$ h(x)^+ \neq 0 $\end{document}</tex-math></inline-formula>, we prove that the equation has at least one nontrivial solution if <inline-formula><tex-math id="M9">\begin{document}$ f(x)^+ = 0 $\end{document}</tex-math></inline-formula> and that the equation has at least two nontrivial solutions if <inline-formula><tex-math id="M10">\begin{document}$ \int_\Omega |f^+|^r\, \text{d}x \in (0, \varLambda^r) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M11">\begin{document}$ r $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M12">\begin{document}$ \varLambda $\end{document}</tex-math></inline-formula> are explicit numbers. These results are novel, which improve and extend the existing results in the literature.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference26 articles.
1. R. A. Adams., Sobolev Spaces, ${ref.volume} (1975).
2. S. Alama, G. Tarantello.On semilinear elliptic equations with indefinite nonlinearities, Calc. Var. Partial Differential Equations, 1 (1993), 439-475.
3. A. Ambrosetti, H. Brezis, G. Cerami.Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal., 122 (1994), 519-543.
4. T. Bartsch, M. Willem.On an elliptic equation with concave and convex nonlinearities, Proc. Amer. Math. Soc., 123 (1995), 3555-3561.
5. F. Bernis, J. Garcia Azorero, I. Peral.Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order, Adv. Differential Equations, 2 (1996), 219-240.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献