Author:
Dai Xiaoqiang,Chen Shaohua
Abstract
<p style='text-indent:20px;'>The Cauchy problem of one dimensional generalized Boussinesq equation is treated by the approach of variational method in order to realize the control aim, which is the control problem reflecting the relationship between initial data and global dynamics of solution. For a class of more general nonlinearities we classify the initial data for the global solution and finite time blowup solution. The results generalize some existing conclusions related this problem.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference22 articles.
1. J. L. Bona, M. Chen, J.-C. Saut.Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media Ⅰ: Derivation and the linear theory, J. Nonlinear Sci., 12 (2002), 283-318.
2. J. L. Bona, R. L. Sachs.Global existence of smooth solutions and stability of solitary waves for a generalized Boussinesq equation, Commun. Math. Phys., 118 (1988), 15-29.
3. J. Boussinesq.Théorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, et communiquant au liquide contene dans ce canal des vitesses sensiblement pareilles de la surface au fond, J. Math. Pure Appl., 17 (1872), 55-108.
4. X. Dai, C. Yang, S. Huang, T. Yu, Y. Zhu.Finite time blow-up for a wave equation with dynamic boundary condition at critical and high energy levels in control systems, Electron. Res. Arch., 28 (2020), 91-102.
5. D.-A. Geba, E. Witz.Revisited bilinear Schrödinger estimates with applications to generalized Boussinesq equations, Electron, Res. Arch., 28 (2020), 627-649.