Author:
Hambric Christopher Logan,Li Chi-Kwong,Pelejo Diane Christine,Shi Junping
Abstract
<p style='text-indent:20px;'>It is shown that for any positive integer <inline-formula><tex-math id="M1">\begin{document}$ n \ge 3 $\end{document}</tex-math></inline-formula>, there is a stable irreducible <inline-formula><tex-math id="M2">\begin{document}$ n\times n $\end{document}</tex-math></inline-formula> matrix <inline-formula><tex-math id="M3">\begin{document}$ A $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ 2n+1-\lfloor\frac{n}{3}\rfloor $\end{document}</tex-math></inline-formula> nonzero entries exhibiting Turing instability. Moreover, when <inline-formula><tex-math id="M5">\begin{document}$ n = 3 $\end{document}</tex-math></inline-formula>, the result is best possible, i.e., every <inline-formula><tex-math id="M6">\begin{document}$ 3\times 3 $\end{document}</tex-math></inline-formula> stable matrix with five or fewer nonzero entries will not exhibit Turing instability. Furthermore, we determine all possible <inline-formula><tex-math id="M7">\begin{document}$ 3\times 3 $\end{document}</tex-math></inline-formula> irreducible sign pattern matrices with 6 nonzero entries which can be realized by a matrix <inline-formula><tex-math id="M8">\begin{document}$ A $\end{document}</tex-math></inline-formula> that exhibits Turing instability.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献