Motion of vortices for the extrinsic Ginzburg-Landau flow for vector fields on surfaces

Author:

Canevari Giacomo1,Segatti Antonio2

Affiliation:

1. Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

2. Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

Abstract

<p style='text-indent:20px;'>We consider the gradient flow of a Ginzburg-Landau functional of the type</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ F_ \varepsilon^{ \mathrm{extr}}(u): = \frac{1}{2}\int_M \left| {D u} \right|_g^2 + \left| { \mathscr{S} u} \right|^2_g +\frac{1}{2 \varepsilon^2}\left(\left| {u} \right|^2_g-1\right)^2 \mathrm{vol}_g $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>which is defined for tangent vector fields (here <inline-formula><tex-math id="M1">\begin{document}$ D $\end{document}</tex-math></inline-formula> stands for the covariant derivative) on a closed surface <inline-formula><tex-math id="M2">\begin{document}$ M\subseteq \mathbb{R}^3 $\end{document}</tex-math></inline-formula> and includes extrinsic effects via the shape operator <inline-formula><tex-math id="M3">\begin{document}$ \mathscr{S} $\end{document}</tex-math></inline-formula> induced by the Euclidean embedding of <inline-formula><tex-math id="M4">\begin{document}$ M $\end{document}</tex-math></inline-formula>. The functional depends on the small parameter <inline-formula><tex-math id="M5">\begin{document}$ \varepsilon&gt;0 $\end{document}</tex-math></inline-formula>. When <inline-formula><tex-math id="M6">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> is small it is clear from the structure of the Ginzburg-Landau functional that <inline-formula><tex-math id="M7">\begin{document}$ \left| {u} \right|_g $\end{document}</tex-math></inline-formula> "prefers" to be close to <inline-formula><tex-math id="M8">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>. However, due to the incompatibility for vector fields on <inline-formula><tex-math id="M9">\begin{document}$ M $\end{document}</tex-math></inline-formula> between the Sobolev regularity and the unit norm constraint, when <inline-formula><tex-math id="M10">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> is close to <inline-formula><tex-math id="M11">\begin{document}$ 0 $\end{document}</tex-math></inline-formula>, it is expected that a finite number of singular points (called vortices) having non-zero index emerges (when the Euler characteristic is non-zero). This intuitive picture has been made precise in the recent work by R. Ignat &amp; R. Jerrard [<xref ref-type="bibr" rid="b7">7</xref>]. In this paper we are interested the dynamics of vortices generated by <inline-formula><tex-math id="M12">\begin{document}$ F_ \varepsilon^{ \mathrm{extr}} $\end{document}</tex-math></inline-formula>. To this end we study the behavior when <inline-formula><tex-math id="M13">\begin{document}$ \varepsilon\to 0 $\end{document}</tex-math></inline-formula> of the solutions of the (properly rescaled) gradient flow of <inline-formula><tex-math id="M14">\begin{document}$ F_ \varepsilon^{ \mathrm{extr}} $\end{document}</tex-math></inline-formula>. In the limit <inline-formula><tex-math id="M15">\begin{document}$ \varepsilon\to 0 $\end{document}</tex-math></inline-formula> we obtain the effective dynamics of the vortices. The dynamics, as expected, is influenced by both the intrinsic and extrinsic properties of the surface <inline-formula><tex-math id="M16">\begin{document}$ M\subseteq \mathbb{R}^3 $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference18 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3