Piecewise discretization of monodromy operators of delay equations on adapted meshes

Author:

Breda Dimitri1,Liessi Davide1,Vermiglio Rossana1

Affiliation:

1. CDLab – Computational Dynamics Laboratory, Department of Mathematics, Computer Science and Physics, University of Udine, via delle Scienze 206, 33100 Udine UD, Italy

Abstract

<p style='text-indent:20px;'>Periodic solutions of delay equations are usually approximated as continuous piecewise polynomials on meshes adapted to the solutions' profile. In practical computations this affects the regularity of the (coefficients of the) linearized system and, in turn, the effectiveness of assessing local stability by approximating the Floquet multipliers. To overcome this problem when computing multipliers by collocation, the discretization grid should include the piecewise adapted mesh of the computed periodic solution. By introducing a piecewise version of existing pseudospectral techniques, we explain why and show experimentally that this choice is essential in presence of either strong mesh adaptation or nontrivial multipliers whose eigenfunctions' profile is unrelated to that of the periodic solution.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

General Medicine,Computational Mathematics,Computational Mechanics

Reference30 articles.

1. A. Andò, Collocation Methods for Complex Delay Problems of Structured Populations, PhD thesis, University of Udine, 2020. Available from: http://cdlab.uniud.it/theses/Ando2020.pdf.

2. A. Andò, Convergence of collocation methods for solving periodic boundary value problems for renewal equations defined through finite-dimensional boundary conditions, Comput. Math. Methods, 3 (2021), Paper No. e1190, 12 pp.

3. A. Andò and D. Breda, Convergence analysis of collocation methods for computing periodic solutions of retarded functional differential equations, SIAM J. Numer. Anal., 58 (2020), 3010–3039. Full-length version at arxiv: 2008.07604 [math.NA].

4. A. Andò and D. Breda, Piecewise orthogonal collocation for computing periodic solutions of renewal equations, submitted.

5. U. M. Ascher, R. M. M. Mattheij and R. D. Russell, Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Prentice Hall, Englewood Cliffs, NJ, 1988.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3