Author:
Aldroubi Akram,Martin Rocio Diaz,Medri Ivan,Rohde Gustavo K.,Thareja Sumati
Abstract
<p style='text-indent:20px;'>This paper presents a new mathematical signal transform that is especially suitable for decoding information related to non-rigid signal displacements. We provide a measure theoretic framework to extend the existing Cumulative Distribution Transform [<xref ref-type="bibr" rid="b29">29</xref>] to arbitrary (signed) signals on <inline-formula><tex-math id="M1">\begin{document}$ \overline {\mathbb{R}} $\end{document}</tex-math></inline-formula>. We present both forward (analysis) and inverse (synthesis) formulas for the transform, and describe several of its properties including translation, scaling, convexity, linear separability and others. Finally, we describe a metric in transform space, and demonstrate the application of the transform in classifying (detecting) signals under random displacements.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference43 articles.
1. A. Aldroubi, S. Li and G. K. Rohde, Partitioning signal classes using transport transforms for data analysis and machine learning, Sampl. Theory Signal Process. Data Anal., 19 (2021), 25pp.
2. L. Ambrosio, Lecture notes on optimal transport problems, in Mathematical Aspects of Evolving Interfaces (Funchal, 2000), Lecture Notes in Math., 1812, Springer, Berlin, 2003 1–52.
3. M. Arjovsky, S. Chintala and L. Bottou, Wasserstein generative adversarial networks, International Conference on Machine Learning PMLR, 2017,214–223.
4. S. Basu, S. Kolouri, G. K. Rohde.Detecting and visualizing cell phenotype differences from microscopy images using transport-based morphometry, PNAS, 111 (2014), 3448-3453.
5. T. Cai, J. Cheng, N. Craig and K. Craig, Linearized optimal transport for collider events, Phys. Rev. D, 102 (2020).
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献