An extension of the angular synchronization problem to the heterogeneous setting

Author:

Cucuringu Mihai,Tyagi Hemant

Abstract

<p style='text-indent:20px;'>Given an undirected measurement graph <inline-formula><tex-math id="M1">\begin{document}$ G = ([n], E) $\end{document}</tex-math></inline-formula>, the classical angular synchronization problem consists of recovering unknown angles <inline-formula><tex-math id="M2">\begin{document}$ \theta_1, \dots, \theta_n $\end{document}</tex-math></inline-formula> from a collection of noisy pairwise measurements of the form <inline-formula><tex-math id="M3">\begin{document}$ (\theta_i - \theta_j) \mod 2\pi $\end{document}</tex-math></inline-formula>, for each <inline-formula><tex-math id="M4">\begin{document}$ \{i, j\} \in E $\end{document}</tex-math></inline-formula>. This problem arises in a variety of applications, including computer vision, time synchronization of distributed networks, and ranking from preference relationships. In this paper, we consider a generalization to the setting where there exist <inline-formula><tex-math id="M5">\begin{document}$ k $\end{document}</tex-math></inline-formula> unknown groups of angles <inline-formula><tex-math id="M6">\begin{document}$ \theta_{l, 1}, \dots, \theta_{l, n} $\end{document}</tex-math></inline-formula>, for <inline-formula><tex-math id="M7">\begin{document}$ l = 1, \dots, k $\end{document}</tex-math></inline-formula>. For each <inline-formula><tex-math id="M8">\begin{document}$ {\left\{{{i, j}}\right\}} \in E $\end{document}</tex-math></inline-formula>, we are given noisy pairwise measurements of the form <inline-formula><tex-math id="M9">\begin{document}$ \theta_{\ell, i} - \theta_{\ell, j} $\end{document}</tex-math></inline-formula> for an <i>unknown</i> <inline-formula><tex-math id="M10">\begin{document}$ \ell \in \{1, 2, \ldots, k\} $\end{document}</tex-math></inline-formula>. This can be thought of as a natural extension of the angular synchronization problem to the heterogeneous setting of multiple groups of angles, where the measurement graph has an unknown edge-disjoint decomposition <inline-formula><tex-math id="M11">\begin{document}$ G = G_1 \cup G_2 \ldots \cup G_k $\end{document}</tex-math></inline-formula>, where the <inline-formula><tex-math id="M12">\begin{document}$ G_i $\end{document}</tex-math></inline-formula>'s denote the subgraphs of edges corresponding to each group. We propose a probabilistic generative model for this problem, along with a spectral algorithm for which we provide a detailed theoretical analysis in terms of robustness against both sampling sparsity and noise. The theoretical findings are complemented by a comprehensive set of numerical experiments, showcasing the efficacy of our algorithm under various parameter regimes. Finally, we consider an application of bi-synchronization to the graph realization problem, and provide along the way an iterative graph disentangling procedure that uncovers the subgraphs <inline-formula><tex-math id="M13">\begin{document}$ G_i $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M14">\begin{document}$ i = 1, \ldots, k $\end{document}</tex-math></inline-formula> which is of independent interest, as it is shown to improve the final recovery accuracy across all the experiments considered.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3