Author:
Luo Hengrui,Patania Alice,Kim Jisu,Vejdemo-Johansson Mikael
Abstract
<p style='text-indent:20px;'>Topological Data Analysis (TDA) provides novel approaches that allow us to analyze the geometrical shapes and topological structures of a dataset. As one important application, TDA can be used for data visualization and dimension reduction. We follow the framework of circular coordinate representation, which allows us to perform dimension reduction and visualization for high-dimensional datasets on a torus using persistent cohomology. In this paper, we propose a method to adapt the circular coordinate framework to take into account the roughness of circular coordinates in change-point and high-dimensional applications. To do that, we use a generalized penalty function instead of an <inline-formula><tex-math id="M1">\begin{document}$ L_{2} $\end{document}</tex-math></inline-formula> penalty in the traditional circular coordinate algorithm. We provide simulation experiments and real data analyses to support our claim that circular coordinates with generalized penalty will detect the change in high-dimensional datasets under different sampling schemes while preserving the topological structures.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference47 articles.
1. H. Adams, A. Tausz and M. Vejdemo-Johansson, JavaPlex: A research software package for persistent (co) homology, in International Congress on Mathematical Software, Lecture Notes in Computer Science, 8592, Springer, Berlin, Heidelberg, (2014), 129–136.
2. C. C. Aggarwal, A. Hinneburg and D. A. Keim, On the surprising behavior of distance metrics in high dimensional space, in International Conference on Database Theory, Lecture Notes in Computer Science, 1973, Springer, Berlin, Heidelberg, (2001), 420–434.
3. J. Alman and V. Vassilevska Williams, A refined laser method and faster matrix multiplication, in Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms (SODA), SIAM, Philadelphia, PA, (2021), 522–539.
4. M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes: Theory and Application, Prentice Hall Information and System Sciences Series, Prentice Hall, Inc., Englewood Cliffs, NJ, 1993.
5. U. Bauer.Ripser: Efficient computation of Vietoris-Rips persistence barcodes, J. Appl. Comput. Topol., 5 (2021), 391-423.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Asymptotics of lower dimensional zero-density regions;Statistics;2023-09-25
2. A topological data analysis based classifier;Advances in Data Analysis and Classification;2023-07-01
3. Combining Geometric and Topological Information for Boundary Estimation;2021 IEEE International Conference on Big Data (Big Data);2021-12-15
4. Topological Learning for Motion Data via Mixed Coordinates;2021 IEEE International Conference on Big Data (Big Data);2021-12-15