Rotational-electric principles of RNA/DNA and viability

Author:

Marks Roman1,Pawłowski Piotr H.2

Affiliation:

1. Institute of Marine and Environmental Sciences, University of Szczecin, Szczecin, Poland

2. Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland

Abstract

<abstract> <p>Photographic investigations of rising bubbles in seawater revealed that each bubble may conduct a single or bi-spiraling motion, which resemble architecture of RNA or DNA respectively. The rotational motion results from acceleration of ionic hydrates, which are separated to anionic and cationic domains at the upper and bottom curvatures of the bubble. Afterwards, rotational motion undergoes further acceleration in the bubble upper vortex, followed by deceleration at the vortex tip. During that phase, the spiraling motion cause significant friction that result in polarization of electronegative atoms of H, C, N, O and P. These may be simultaneously arranged around a whirling cationic strands and form phosphate groups, ribose and nitrogen bases equipped with H<sub>2</sub> and H<sub>3</sub> rotors. It is hypothesized that such hydrogen rotors may operate as generators of electrons, which may be detached from valence shells of electropositive atoms. Then, electrons may flow via nitrogen bases and deoxyribose or ribose to phosphate groups. Next, the negatively charged edges of phosphate groups may attract cationic hydrates and energize their rotational motion in the grooves, then causing also its spiraling projection outward. That may be responsible for replication of nucleotides and its arrangement along the cationic flow into RNA or DNA polymers, in the same manner as originally produced by rising bubbles. Moreover, it points that hydrogen rotors may generate energy needed for viability as well as interact with all physical and chemical fields.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Molecular Biology,Biochemistry,Structural Biology,Biophysics

Reference35 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3