Abstract
<abstract>
<p>In diagnosing the urinary tract and related diseases, the problem of light scattering from human urine was examined on the basis of classical electromagnetic theory. Numerical calculations were made for the designed cylindrical model with the help of optical parameters in the literature obtained from the laboratory test results of urine samples. In the designed model, the changes of the scattered intensity of the light from the urine solution according to the size parameter of the particles and the angular distribution of the system (including forward, side and back scattering) in the equatorial plane were obtained, in both transverse electric (TE) and transverse magnetic (TM) of the polarization states of the light. It was observed that the molecular density changes caused by the materials in the urine sample changed primarily the optical parameters and indirectly the intensity distribution of the scattered light. Thus, with the contribution of standard data provided as a result of light scatter calculations from urine samples taken from people with normal and different diseases, it will be easier to diagnose diseases that will be encountered later.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Molecular Biology,Biochemistry,Structural Biology,Biophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献