Hemorheological measurements over the shear-thinning regime. In vitro comparative study for hyperglycemia

Author:

Elblbesy Mohamed A.12,Kandil Bothaina A.3

Affiliation:

1. Medical Laboratory Technology Department, Faculty of Applied Medical Sciences, University of Tabuk

2. Medical Biophysics Department, Medical Research Institute, Alexandria University, Egypt

3. Department of Radiological Science and Medical Imaging, Faculty of Allied Medical Science, Pharos University, Alexandria 21311, Egypt

Abstract

<abstract> <p>We investigated the shear thinning of normal and diabetic blood experimentally. The shear thinning of the blood has been analyzed using the Power-law model. Over the viscosity time course, the coagulation process of blood samples from diabetic and healthy subjects was observed. The shear thinning behavior of blood samples was examined in the shear rate ranging from 5 s<sup>−1</sup> to 222 s<sup>−1</sup>, and viscosity time-course was studied at a shear rate of 50 s<sup>−1</sup>. The consistency coefficients were 8.638 ± 0.4860 mPa·s, and 6.658 ± 0.3219 mPa·s for diabetic blood and control, respectively. This difference was statistically significant (p &lt; 0.0001). The parameters extracted from the viscosity–time curve were the time-to-gel point (TGP), maximum clot viscosity (MCV), and final clot viscosity (FCV). The diabetic blood exhibited a significantly high (p &lt; 0.0001) shorter TGP (148.8 ± 6.024 s) than control (199.1 ± 4.865 s). A considerably higher MCV for diabetic blood (26.39 ± 1.451 cP) than the control (17.54 ± 2.324 cP) was reported. FCV for diabetic blood (10.89 ± 1.12 cP) was significantly higher than control (7.6 ± 0.8 cP). The viscosity time course as well as features obtained via the power-law model reflected the flow state of diabetic blood.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference35 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3