Rigidity sensing by blood-borne leukocytes: Is it independent of internal signaling?

Author:

Sarvestami Alireza1,Smith Madeline2,Moorthy Arsha2,Kho Patrick1,Talbo Lauren1,de Silva Chamaree2

Affiliation:

1. School of Engineering, Mercer University, Macon, GA 31207, USA

2. College of Liberal Arts and Sciences, Mercer University, Macon, GA 31207, USA

Abstract

<abstract> <p>Atherosclerosis is a chronic inflammatory disease that results in the formation of lipid-rich lesions and stiffening of arterial walls. An increasing body of evidence suggests that nearly all members of the leukocyte family accumulate within atherosclerosis-prone arteries and participate in various stages of disease progression. Recently, it has been proposed that progressive changes of the elastic modulus of the arterial wall during plaque development may directly influence the kinematics of leukocyte rolling. In the present study, we propose that rigidity sensing of rolling leukocytes may occur spontaneously due to the stiffness-dependent elastic instability of reversible bonds between rolling leukocytes and the arterial walls. This effect is mechanistic in nature and operates independently of cell biochemical signaling. To partially test this hypothesis, we measured the rolling velocities of functionalized microparticles, comparable in size to leukocytes, interacting with E-selectin coated substrates of controlled stiffness. The kinematic analysis of the particles' motion reveals a larger rolling velocity on softer substrates, aligning with previous reports regarding monocytes. A simple kinetic model for a cluster of reversible bonds formed between a cell and the underlying substrate demonstrates that the critical forces needed for bond disassembly decrease as substrate stiffness decreases. Consequently, bonds are more likely to break on softer substrates, resulting in enhanced cell mobility.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference33 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3