Contributions of topological polar-polar contacts to achieve better folding stability of 2D/3D HP lattice proteins: An in silico approach

Author:

Alas-Guardado Salomón J., ,González-Pérez Pedro Pablo,Beltrán Hiram Isaac, ,

Abstract

<abstract> <p>Many of the simplistic hydrophobic-polar lattice models, such as Dill's model (called <bold>Model 1</bold> herein), are aimed to fold structures through hydrophobic-hydrophobic interactions mimicking the well-known hydrophobic collapse present in protein structures. In this work, we studied 11 designed hydrophobic-polar sequences, S<sub>1</sub>-S<sub>8</sub> folded in 2D-square lattice, and S<sub>9</sub>-S<sub>11</sub> folded in 3D-cubic lattice. And to better fold these structures we have developed <bold>Model 2</bold> as an approximation to convex function aimed to weight hydrophobic-hydrophobic but also polar-polar contacts as an augmented version of <bold>Model 1</bold>. In this partitioned approach hydrophobic-hydrophobic ponderation was tuned as <italic>α</italic>-1 and polar-polar ponderation as <italic>α</italic>. This model is centered in preserving required hydrophobic substructure, and at the same time including polar-polar interactions, otherwise absent, to reach a better folding score now also acquiring the polar-polar substructure. In all tested cases the folding trials were better achieved with <bold>Model 2</bold>, using <italic>α</italic> values of 0.05, 0.1, 0.2 and 0.3 depending of sequence size, even finding optimal scores not reached with <bold>Model 1</bold>. An important result is that the better folding score, required the lower <italic>α</italic> weighting. And when <italic>α</italic> values above 0.3 are employed, no matter the nature of the hydrophobic-polar sequence, banning of hydrophobic-hydrophobic contacts started, thus yielding misfolding of sequences. Therefore, the value of <italic>α</italic> to correctly fold structures is the result of a careful weighting among hydrophobic-hydrophobic and polar-polar contacts.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Molecular Biology,Biochemistry,Structural Biology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3