Author:
Biswas Swarnava, ,Sen Debajit,Bhatia Dinesh,Phukan Pranjal,Mukherjee Moumita, , , ,
Abstract
<abstract>
<p>The use of Artificial Intelligence (AI) in combination with Internet of Things (IoT) drastically reduces the need to test the COVID samples manually, saving not only time but money and ultimately lives. In this paper, the authors have proposed a novel methodology to identify the COVID-19 patients with an annotated stage to enable the medical staff to manually activate a geo-fence around the subject thus ensuring early detection and isolation. The use of radiography images with pathology data used for COVID-19 identification forms the first-ever contribution by any research group globally. The novelty lies in the correct stage classification of COVID-19 subjects as well. The present analysis would bring this AI Model on the edge to make the facility an IoT-enabled unit. The developed system has been compared and extensively verified thoroughly with those of clinical observations. The significance of radiography imaging for detecting and identification of COVID-19 subjects with severity score tag for stage classification is mathematically established. In a Nutshell, this entire algorithmic workflow can be used not only for predictive analytics but also for prescriptive analytics to complete the entire pipeline from the diagnostic viewpoint of a doctor. As a matter of fact, the authors have used a supervised based learning approach aided by a multiple hypothesis based decision fusion based technique to increase the overall system's accuracy and prediction. The end to end value chain has been put under an IoT based ecosystem to leverage the combined power of AI and IoT to not only detect but also to isolate the coronavirus affected individuals. To emphasize further, the developed AI model predicts the respective categories of a coronavirus affected patients and the IoT system helps the point of care facilities to isolate and prescribe the need of hospitalization for the COVID patients.</p>
</abstract>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Molecular Biology,Biochemistry,Structural Biology,Biophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献