RFFE – Random Forest Fuzzy Entropy for the classification of Diabetes Mellitus

Author:

Usha Ruby A.1,George Chellin Chandran J1,Swasthika Jain TJ2,Chaithanya BN2,Patil Renuka2

Affiliation:

1. School of Computing Science and Engineering Department, VIT Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh–466114, India

2. Department of Computer Science and Engineering, GITAM School of Technology, Nagadenehalli, Doddaballapura, Karnataka–561203, India

Abstract

<abstract> <p>Diabetes is a category of metabolic disease commonly known as a chronic illness. It causes the body to generate less insulin and raises blood sugar levels, leading to various issues and disrupting the functioning of organs, including the retinal, kidney and nerves. To prevent this, people with chronic illnesses require lifetime access to treatment. As a result, early diabetes detection is essential and might save many lives. Diagnosis of people at high risk of developing diabetes is utilized for preventing the disease in various aspects. This article presents a chronic illness prediction prototype based on a person's risk feature data to provide an early prediction for diabetes with Fuzzy Entropy random vectors that regulate the development of each tree in the Random Forest. The proposed prototype consists of data imputation, data sampling, feature selection, and various techniques to predict the disease, such as Fuzzy Entropy, Synthetic Minority Oversampling Technique (SMOTE), Convolutional Neural Network (CNN) with Stochastic Gradient Descent with Momentum (SGDM), Support Vector Machines (SVM), Classification and Regression Tree (CART), K-Nearest Neighbor (KNN), and Naïve Bayes (NB). This study uses the existing Pima Indian Diabetes (PID) dataset for diabetic disease prediction. The predictions' true/false positive/negative rate is investigated using the confusion matrix and the receiver operating characteristic area under the curve (ROCAUC). Findings on a PID dataset are compared with machine learning algorithms revealing that the proposed Random Forest Fuzzy Entropy (RFFE) is a valuable approach for diabetes prediction, with an accuracy of 98 percent.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Public Health, Environmental and Occupational Health,Health Informatics

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3