Utilizing AI for extracting insights on post WHO's COVID-19 vaccination declaration from X (Twitter) social network

Author:

Al Sailawi Ali S. Abed12,Kangavari Mohammad Reza1

Affiliation:

1. School of Computer Engineering, Iran University of Science and Technology, Tehran, Iran

2. College of Law, University of Misan, Amarah, Iraq

Abstract

<abstract> <p>This study explores the use of artificial intelligence (AI) to analyze information from X (previously Twitter) feeds related to COVID-19, specifically focusing on the time following the World Health Organization's (WHO) vaccination announcement. This aspect of the pandemic has not been studied by other researchers focusing on vaccination news. By utilizing advanced AI algorithms, the research aims to examine a wealth of data, sentiments, and trends to enhance crisis management strategies effectively. Our methods involved collecting a dataset of tweets from December 2020 to July 2021. By using specific keywords strategically, we gathered a substantial 15.5 million tweets, focusing on important hashtags like #vaccine and #coronavirus while filtering out irrelevant replies and retweets. The assessment of three different machine learning models–BiLSTM, FFNN, and CNN – highlights the exceptional performance of BiLSTM, achieving an impressive F1-score of 0.84 on the test set, with Precision and Recall metrics at 0.85 and 0.83, respectively. The study provides a detailed visualization of global sentiments on COVID-19 topics, with a main goal of extracting insights to manage public health crises effectively. Sentiment labels were predicted using various classification models and categorized as positive, negative, and neutral for each country after adjusting for population differences. An important finding from the analysis is the variation in sentiments across regions, for instance, with Eastern European countries showing positive views on post-vaccination economic recovery, while China and the United States express negative opinions on the same topic.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do ceiling fans in rooms help to reduce or disperse the transmission of breathing aerosols?;International Journal of Air-Conditioning and Refrigeration;2024-07-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3