Affiliation:
1. Faculty of Engineering in Agricultural and Environmental Sciences, Universidad Técnica del Norte, 100105, Ecuador
2. Department of Nutrition and Quality, National Institute of Agricultural Research Mejía, 1701340, Ecuador
Abstract
<p>Cocoa (<italic>Theobroma cacao</italic> L.), indigenous to the tropical forests of the Americas, is renowned not only as the primary raw material for chocolate and its derivatives (cocoa liquor and butter) but also as a rich source of phytonutrients with beneficial health effects. Current research has elucidated that within the post-harvest process, fermentation stands as the critical stage for the formation of the principal biochemical quality markers in cocoa, known as polyphenols. These compounds contribute to the bitterness and astringency that constitute the complex flavor profile of chocolate; however, their excessive presence can be organoleptically undesirable. A high phenolic content (>10%) is associated with insufficient fermentation and certain varieties of ordinary cocoa, thereby serving as a discriminatory parameter between fine-flavor cocoa (Nacional) and bulk cocoa (CCN-51). Beyond their technological significance, these components have garnered substantial scientific interest, as polyphenol consumption is associated with potential protective effects against the development of non-communicable chronic diseases (including diabetes, cancer, and atherosclerosis), attributable to their potent antioxidant properties. In this context, the objective of this study was to evaluate the impact of fermentation time on the antioxidant capacity (AC) and total polyphenol content (TPC) in the principal Ecuadorian cocoa varieties (i.e., CCN-51 clone and Nacional). Pilot-scale fermentation experiments demonstrated significant variations in antioxidant capacity (CCN-51 clone: 785.61 to 1852.78 and Nacional: 564.32 to 1428.60 µmol TE/g) and total polyphenol content (CCN-51 clone: 52.92 to 162.82; Nacional: 40.55 to 157.50 mg gallic acid/g). Both parameters decreased markedly throughout the process, with the CCN-51 clone exhibiting greater retention.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Reference36 articles.
1. Espín Susana & Samaniego Iván (2016) Manual para el análisis de parámetros químicos asociados a la calidad del cacao. Quito—Ecuador: Estación Experimental Santa Catalina- INIAP.
2. Arvelo M, González D, Steven A, et al. (2017) Manual Técnico del Cultivo de Cacao Prácticas Latinoamericanas. Available from: https://iica.int/es.
3. Barišić V, Kopjar M, Jozinović A, et al.(2019) The chemistry behind chocolate production. Molecules 24: 3163. https://doi.org/10.3390/molecules24173163
4. Beckett ST, Fowler MS, Ziegler GR (2017) Beckett's Industrial Chocolate Manufacture and Use. https://doi.org/10.1002/9781118923597
5. López Guerrero A (2017) Producción y Comercialización de Cacao Fino de Aroma en el Ecuador-Año 2012–2014. Available from: https://www.scpm.gob.ec/sitio/wp-content/uploads/2019/03/ESTUDIO-DEL-CACAO-IZ7-version-publica-ultima.pdf.