Improve pineapples growth by nano-membranes accessory and under stress condition in far north of Taiwan

Author:

Thanh Dinh Thi Hong, ,Chang Yu Kaung,Chen Son Zuang,Chang Hsiao Dao, , ,

Abstract

<abstract> <p>The dual layers of Nano-membranes barrier, could succeeded in regulation nutrient element and control water-borne disease by improving aerations through added dual layers of nano-membranes, this plantation model provide concept of providing hydrophilic properties and 500 nm pore size believed to be much precision tools for agricultural utilization. This rebuilding of pineapple cultivation was optimized in green-house with natural ventilation, Optimized humidity and free watering were properly practiced by implement of diffusion cage for a novel revealed boundary effect by 500 nm mold inject product. Effect indicated as indicated: Cellulose, PBT, CTA in sequence have better boundary effects over limiting the diffusion of nitrate, phosphate, and a small part of potassium in the root boundary regime through proper moisture with 0.5–0.8 L/pot button irrigation, The intensity of boundary effect were revealed in kinetic analysis follow in sequence: EC (1500 mg L<sup>−1</sup>) &gt; &gt; nitrate (300 mg L<sup>−1</sup>) &gt; TPO (2.5 mg L<sup>−1</sup>), while highly fluctuate for TPO. Then indication of hydrophilic PBT was better than PP was verified in barrier model. In the growth stage, separate initial I–III for direct releasing from the fertilizer and III–VI for hydrolysis &amp; secretion of nutrient, especially for TPO anion form, indicate highly ion charged or polar attraction exerted. While phosphate was delivered slowly, the organic practice was found promising in deliver and uptake to the final two or three stage for flowering and fruiting. The verification of deliver of nutrient by double caged box in the rhigime zone, indicated effective in lowered the damping off/nematode syndrome, which opened the extension cropping in suboptimal area for pineapples. The success of growth character improved by control disease and pest, reach complete maturation. Under 80 % of final fruiting, the balance analysis show consistence in expectation for Pya (wild) &gt; Pyc (hybrid) &gt; Pyb (interbreed).</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Agricultural and Biological Sciences (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3