Forecasting arabica coffee yields by auto-regressive integrated moving average and machine learning approaches

Author:

Kittichotsatsawat Yotsaphat1,Boonprasope Anuwat1,Rauch Erwin2,Tippayawong Nakorn3,Tippayawong Korrakot Yaibuathet14

Affiliation:

1. Supply Chain and Engineering Management Research Unit, Chiang Mai University, Chiang Mai, Thailand

2. Department of Industrial Engineering, Free University of Bolzano, Bolzano, Italy

3. Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand

4. Department of Industrial Engineering, Faculty of Engineering, Chiang Mai University, Chiang Mai, Thailand

Abstract

<abstract> <p>Coffee is a major industrial crop that creates high economic value in Thailand and other countries worldwide. A lack of certainty in forecasting coffee production could lead to serious operation problems for business. Applying machine learning (ML) to coffee production is crucial since it can help in productivity prediction and increase prediction accuracy rate in response to customer demands. An ML technique of artificial neural network (ANN) model, and a statistical technique of autoregressive integrated moving average (ARIMA) model were adopted in this study to forecast arabica coffee yields. Six variable datasets were collected from 2004 to 2018, including cultivated areas, productivity zone, rainfalls, relative humidity and minimum and maximum temperatures, totaling 180 time-series data points. Their prediction performances were evaluated in terms of correlation coefficient (R<sup>2</sup>), and root means square error (RMSE). From this work, the ARIMA model was optimized using the fitting model of (p, d, q) amounted to 64 conditions through the Akaike information criteria arriving at (2, 1, 2). The ARIMA results showed that its R<sup>2</sup> and RMSE were 0.7041 and 0.1348, respectively. Moreover, the R<sup>2</sup> and RMSE of the ANN model were 0.9299 and 0.0642 by the Levenberg-Marquardt algorithm with TrainLM and LearnGDM training functions, two hidden layers and six processing elements. Both models were acceptable in forecasting the annual arabica coffee production, but the ANN model appeared to perform better.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Agricultural and Biological Sciences (miscellaneous),Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3