Peaberry and normal coffee bean classification using CNN, SVM, and KNN: Their implementation in and the limitations of Raspberry Pi 3

Author:

Gope Hira Lal12,Fukai Hidekazu1

Affiliation:

1. Faculty of Engineering, Gifu University, 501-1193, Japan

2. Faculty of Agricultural Engineering and Technology, Sylhet Agricultural University, Sylhet-3100, Bangladesh

Abstract

<abstract> <p>Peaberries are a special type of coffee bean with an oval shape. Peaberries are not considered defective, but separating peaberries is important to make the shapes of the remaining beans uniform for roasting evenly. The separation of peaberries and normal coffee beans increases the value of both peaberries and normal coffee beans in the market. However, it is difficult to sort peaberries from normal beans using existing commercial sorting machines because of their similarities. In previous studies, we have shown the availability of image processing and machine learning techniques, such as convolutional neural networks (CNNs), support vector machines (SVMs), and k-nearest-neighbors (KNNs), for the classification of peaberries and normal beans using a powerful desktop PC. As the next step, assuming the use of our system in the least developed countries, this study was performed to examine their implementation in and the limitations of Raspberry Pi 3. To improve the performance, we modified the CNN architecture from our previous studies. As a result, we found that the CNN model outperformed both linear SVM and KNN on the use of Raspberry Pi 3. For instance, the trained CNN could classify approximately 13.77 coffee bean images per second with 98.19% accuracy of the classification with 64×64 pixel color images on Raspberry Pi 3. There were limitations of Raspberry Pi 3 for linear SVM and KNN on the use of large image sizes because of the system's small RAM size. Generally, the linear SVM and KNN were faster than the CNN with small image sizes, but we could not obtain better results with both the linear SVM and KNN than the CNN in terms of the classification accuracy. Our results suggest that the combination of the CNN and Raspberry Pi 3 holds the promise of inexpensive peaberries and a normal bean sorting system for the least developed countries.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Agricultural and Biological Sciences (miscellaneous),Food Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3