Comprehensive assessment of irrigation water requirements in Iran

Author:

Vazifedoust Majid1,Keshavarz Mohammadreza2,Mokhtari Ali3,Barikani Elham4,Palouj Mojtaba4

Affiliation:

1. Department of Water Engineering, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran

2. Department of Irrigation Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

3. School of Life Sciences, Technical University of Munich, 85354 Freising, Germany

4. Agricultural Planning Economic and Rural Development Research Institute (APERDRI), Ministry of Agriculture, Tehran, Iran

Abstract

<abstract> <p>A national web-based simulation portal was developed to estimate the irrigation water requirements at plain scale in Iran. The National Water Portal (NWP) consists of four national databases (climatic, soil, crop, and spatial data), a lumped water balance model, and a graphical user interface (GUI). The irrigation water requirements in standard conditions were estimated based on the dual crop coefficient approach presented by FAO 56. Net irrigation requirements (NIR) and gross irrigation requirements (GIR) were calculated for 125 different crops cultivated in the 609 plains in Iran. Results were aggregated at both political and hydrological scales. The statistical comparison between the estimated NIR and reported values in the literature reviews indicates a correlation coefficient of 75% with root mean square error (RMSE) of less than 280 m<sup>3</sup> ha<sup>−1</sup>. Results showed that sugar cane has the highest NIR value (18318 m<sup>3</sup> ha<sup>−1</sup>) among the studied crops, and sugar beet has the second highest NIR value (5100–11896 m<sup>3</sup> ha<sup>−1</sup>). The aggregated amount of NIR and GIR for the entire country was calculated as 47 and 105 billion cubic meters (BCM), respectively. Results indicate that 3.772 million cubic meter (MCM) of water can be saved by applying 15% water stress. By increasing the irrigation efficiency to 65% without considering any water stress, 3.482 MCM of water can be saved.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference46 articles.

1. Ebrahimi P (2022) Chapter 14—Analysis of social resilience of villagers in the face of drought using LPCIEA indicator case study: Downstream of Dorodzan dam. In: Pourghasemi HR (Ed.), Computers in Earth and Environmental Sciences, Elsevier, 199–219. https://doi.org/10.1016/B978-0-323-89861-4.00039-7

2. Mokarram M, Pourghasemi HR, Hu M, et al. (2021) Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA-Markov model. Sci Total Environ 781: 146703. https://doi.org/10.1016/j.scitotenv.2021.146703

3. Mafi-Gholami D, Zenner EK, Jaafari A, et al. (2020) Spatially explicit predictions of changes in the extent of mangroves of Iran at the end of the 21st century. Estuarine, Coastal Shelf Sci 237:106644. https://doi.org/10.1016/j.ecss.2020.106644

4. Mesgaran MB, Madani K, Hashemi H, et al. (2017) Iran's land suitability for agriculture. Sci Rep 7: 7670. https://doi.org/10.1038/s41598-017-08066-y

5. Abasi F, Naseri A, Sohran F, et al. (2015) Official Report: Improvement of water consumption efficiency. Agricultural Research Education and Extension Organization of IRAN.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3