Time optimal problems on Lie groups and applications to quantum control

Author:

Jurdjevic Velimir

Abstract

<abstract><p>In this paper we introduce a natural compactification of a left (right) invariant affine control system on a semi-simple Lie group $ G $ in which the control functions belong to the Lie algebra of a compact Lie subgroup $ K $ of $ G $ and we investigate conditions under which the time optimal solutions of this compactified system are "approximately" time optimal for the original system. The basic ideas go back to the papers of R.W. Brockett and his collaborators in their studies of time optimal transfer in quantum control (<sup>[<xref ref-type="bibr" rid="b1">1</xref>]</sup>, <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup>). We showed that every affine system can be decomposed into two natural systems that we call horizontal and vertical. The horizontal system admits a convex extension whose reachable sets are compact and hence posess time-optimal solutions. We then obtained an explicit formula for the time-optimal solutions of this convexified system defined by the symmetric Riemannian pair $ (G, K) $ under the assumption that the Lie algebra generated by the control vector fields is equal to the Lie algebra of $ K $.</p> <p>In the second part of the paper we applied our results to the quantum systems known as Icing $ n $-chains (introduced in <sup>[<xref ref-type="bibr" rid="b2">2</xref>]</sup>). We showed that the two-spin chains conform to the theory in the first part of the paper but that the three-spin chains show new phenomena that take it outside of the above theory. In particular, we showed that the solutions for the symmetric three-spin chains studied by (<sup>[<xref ref-type="bibr" rid="b3">3</xref>]</sup>, <sup>[<xref ref-type="bibr" rid="b4">4</xref>]</sup>) are solvable in terms of elliptic functions with the solutions completely different from the ones encountered in the two-spin chains.</p></abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3