Author:
Ramos Priscila Santos,Sousa J. Vanterler da C.,de Oliveira E. Capelas
Abstract
<p style='text-indent:20px;'>We discuss the existence and uniqueness of mild solutions for a class of quasi-linear fractional integro-differential equations with impulsive conditions via Hausdorff measures of noncompactness and fixed point theory in Banach space. Mild solution controllability is discussed for two particular cases.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Modeling and Simulation
Reference56 articles.
1. R. Almeida.A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simul., 44 (2017), 460-481.
2. R. Almeida, A. M. C. Brito da Cruz, N. Martins, M. T. T. Monteiro.An epidemiological MSEIR model described by the Caputo fractional derivative, Inter. J. Dyn. Control, 7 (2019), 776-784.
3. R. Almeida, A. B. Malinowska and Tatiana Odzijewicz, On systems of fractional differential equations with the $\psi$-Caputo derivative and their applications, Math. Meth. Appl. Sci., (2019), 1-16.
4. J. M. Ayerbe Toledano, T. Domínguez Benavides and G. López Acedo, Measure of Nonompactness in Metric Fixed Point Theorem, Birkhäuser Verlag, Basel, 1997.
5. D. Bahuguna, R. Sakthivel, A. Chadha.Asymptotic stability of fractional impulsive neutral stochastic partial integro-differential equations with infinite delay, Stochc. Anal. Appl., 35 (2017), 63-88.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献