Affiliation:
1. Université Polytechnique Hauts-de-France, CÉRAMATHS/DEMAV, Valenciennes, France
Abstract
<p style='text-indent:20px;'>In this paper, we investigate the stabilization of a linear Bresse system with one singular local frictional damping acting in the longitudinal displacement, under fully Dirichlet boundary conditions. First, we prove the strong stability of our system. Next, using a frequency domain approach combined with the multiplier method, we establish the exponential stability of the solution if the three waves have the same speed of propagation. On the contrary, we prove that the energy of our system decays polynomially with rates <inline-formula><tex-math id="M1">\begin{document}$ t^{-1} $\end{document}</tex-math></inline-formula> or <inline-formula><tex-math id="M2">\begin{document}$ t^{-\frac{1}{2}} $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Modeling and Simulation
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献