A canonical model of the one-dimensional dynamical Dirac system with boundary control

Author:

Belishev Mikhail I.,Simonov Sergey A.

Abstract

<p style='text-indent:20px;'>The one-dimensional Dirac dynamical system <inline-formula><tex-math id="M1">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> is</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{align*} &amp; iu_t+i\sigma_{\!_3}\, u_x+Vu = 0, \, \, \, \, x, t&gt;0;\, \, \, u|_{t = 0} = 0, \, \, x&gt;0;\, \, \, \, u_1|_{x = 0} = f, \, \, t&gt;0, \end{align*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \sigma_{\!_3} = \begin{pmatrix}1&amp;0 \\ 0&amp;-1\end{pmatrix} $\end{document}</tex-math></inline-formula> is the Pauli matrix; <inline-formula><tex-math id="M3">\begin{document}$ V = \begin{pmatrix}0&amp;p\\ \bar p&amp;0\end{pmatrix} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M4">\begin{document}$ p = p(x) $\end{document}</tex-math></inline-formula> is a potential; <inline-formula><tex-math id="M5">\begin{document}$ u = \begin{pmatrix}u_1^f(x, t) \\ u_2^f(x, t)\end{pmatrix} $\end{document}</tex-math></inline-formula> is the trajectory in <inline-formula><tex-math id="M6">\begin{document}$ \mathscr H = L_2(\mathbb R_+;\mathbb C^2) $\end{document}</tex-math></inline-formula>; <inline-formula><tex-math id="M7">\begin{document}$ f\in\mathscr F = L_2([0, \infty);\mathbb C) $\end{document}</tex-math></inline-formula> is a boundary control. System <inline-formula><tex-math id="M8">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula> is not controllable: the total reachable set <inline-formula><tex-math id="M9">\begin{document}$ \mathscr U = {\rm span}_{t&gt;0}\{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $\end{document}</tex-math></inline-formula> is not dense in <inline-formula><tex-math id="M10">\begin{document}$ \mathscr H $\end{document}</tex-math></inline-formula>, but contains a controllable part <inline-formula><tex-math id="M11">\begin{document}$ \Sigma_u $\end{document}</tex-math></inline-formula>. We construct a dynamical system <inline-formula><tex-math id="M12">\begin{document}$ \Sigma_a $\end{document}</tex-math></inline-formula>, which is controllable in <inline-formula><tex-math id="M13">\begin{document}$ L_2(\mathbb R_+;\mathbb C) $\end{document}</tex-math></inline-formula> and connected with <inline-formula><tex-math id="M14">\begin{document}$ \Sigma_u $\end{document}</tex-math></inline-formula> via a unitary transform. The construction is based on geometrical optics relations: trajectories of <inline-formula><tex-math id="M15">\begin{document}$ \Sigma_a $\end{document}</tex-math></inline-formula> are composed of jump amplitudes that arise as a result of projecting in <inline-formula><tex-math id="M16">\begin{document}$ \overline{\mathscr U} $\end{document}</tex-math></inline-formula> onto the reachable sets <inline-formula><tex-math id="M17">\begin{document}$ \mathscr U^t = \{u^f(\cdot, t)\, |\, \, f\in \mathscr F\} $\end{document}</tex-math></inline-formula>. System <inline-formula><tex-math id="M18">\begin{document}$ \Sigma_a $\end{document}</tex-math></inline-formula>, which we call the <i>amplitude model</i> of the original <inline-formula><tex-math id="M19">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula>, has the same input/output correspondence as system <inline-formula><tex-math id="M20">\begin{document}$ \Sigma $\end{document}</tex-math></inline-formula>. As such, <inline-formula><tex-math id="M21">\begin{document}$ \Sigma_a $\end{document}</tex-math></inline-formula> provides a canonical completely reachable realization of the Dirac system.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3