Author:
Krasnoschok Mykola,Vasylyeva Nataliya
Abstract
<p style='text-indent:20px;'>For <inline-formula><tex-math id="M1">\begin{document}$ \nu\in(0,1) $\end{document}</tex-math></inline-formula>, we investigate the nonautonomous subdiffusion equation:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathbf{D}_{t}^{\nu}u-\mathcal{L}u = f(x,t), $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M2">\begin{document}$ \mathbf{D}_{t}^{\nu} $\end{document}</tex-math></inline-formula> is the Caputofractional derivative and <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{L} $\end{document}</tex-math></inline-formula> is a uniformly ellipticoperator with smooth coefficients depending on time. Undersuitable conditions on the given data and a minimal number (i.e.the necessary number) of compatibility conditions, the globalclassical solvability to the related initial-boundary valueproblems are established in the weighted fractional Hölderspaces.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Modelling and Simulation
Reference47 articles.
1. M. Abromowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, No. 55 U. S. Government Printing Office, Washington, D. C., 1964
2. R. L. Bagley, P. Torvik.A theoretical basis for the application of fractional calculus to viscoelastisity, J. Rheol., 27 (1983), 201-210.
3. E. Bazhlekova, B. Jin, R. Lazarov, Z. Zhou.An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131 (2015), 1-31.
4. V. S. Belonosov.Estimates of solutions of parabolic systems in weighted Hölder classes and some of their applications, Mat. SSSR Sb., 38 (1981), 151-173.
5. G. I. Bizhanova.Solution in a weighted Hölder space of an initial-boundary value problem for a second-order parabolic equation with a time derivative in the conjugation condition, Algebra i Analiz, 6 (1994), 64-94.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献