Optimal control of the 3D damped Navier-Stokes-Voigt equations with control constraints

Author:

Kumarasamy Sakthivel1

Affiliation:

1. Department of Mathematics, Indian Institute of Space Science and Technology (IIST), Trivandrum- 695 547, India

Abstract

<p style='text-indent:20px;'>In this paper, we consider the 3D Navier-Stokes-Voigt (NSV) equations with nonlinear damping <inline-formula><tex-math id="M1">\begin{document}$ |u|^{r-1}u, r\in[1, \infty) $\end{document}</tex-math></inline-formula> in bounded and space-periodic domains. We formulate an optimal control problem of minimizing the curl of the velocity field in the energy norm subject to the flow velocity satisfying the damped NSV equation with a distributed control force. The control also needs to obey box-type constraints. For any <inline-formula><tex-math id="M2">\begin{document}$ r\geq 1, $\end{document}</tex-math></inline-formula> the existence and uniqueness of a weak solution is discussed when the domain <inline-formula><tex-math id="M3">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula> is periodic/bounded in <inline-formula><tex-math id="M4">\begin{document}$ \mathbb R^3 $\end{document}</tex-math></inline-formula> while a unique strong solution is obtained in the case of space-periodic boundary conditions. We prove the existence of an optimal pair for the control problem. Using the classical adjoint problem approach, we show that the optimal control satisfies a first-order necessary optimality condition given by a variational inequality. Since the optimal control problem is non-convex, we obtain a second-order sufficient optimality condition showing that an admissible control is locally optimal. Further, we derive optimality conditions in terms of adjoint state defined with respect to the growth of the damping term for a global optimal control.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3