Abstract
<p style='text-indent:20px;'>We analyze the interior controllability problem for a non-local Schrödinger equation involving the fractional Laplace operator <inline-formula><tex-math id="M1">\begin{document}$ (-\Delta)^{\, {s}}{} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M2">\begin{document}$ s\in(0, 1) $\end{document}</tex-math></inline-formula>, on a bounded <inline-formula><tex-math id="M3">\begin{document}$ C^{1, 1} $\end{document}</tex-math></inline-formula> domain <inline-formula><tex-math id="M4">\begin{document}$ \Omega\subset{\mathbb{R}}^N $\end{document}</tex-math></inline-formula>. We first consider the problem in one space dimension and employ spectral techniques to prove that, for <inline-formula><tex-math id="M5">\begin{document}$ s\in[1/2, 1) $\end{document}</tex-math></inline-formula>, null-controllability is achieved through an <inline-formula><tex-math id="M6">\begin{document}$ L^2(\omega\times(0, T)) $\end{document}</tex-math></inline-formula> function acting in a subset <inline-formula><tex-math id="M7">\begin{document}$ \omega\subset\Omega $\end{document}</tex-math></inline-formula> of the domain. This result is then extended to the multi-dimensional case by applying the classical multiplier method, joint with a Pohozaev-type identity for the fractional Laplacian.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Modeling and Simulation
Reference59 articles.
1. H. Antil, U. Biccari, R. Ponce, M. Warma and S. Zamorano, Controllability properties from the exterior under positivity constraints for a 1-d fractional heat equation, arXiv preprint, arXiv: 1910.14529.
2. H. Antil, R. Khatri and M. Warma, External optimal control of nonlocal PDEs, Inverse Problems, 35 (2019), 084003, 35 pp.
3. C. Bardos, G. Lebeau, J. Rauch.Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Control Optim., 30 (1992), 1024-1065.
4. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Berlin, 1976.
5. U. Biccari, V. Hernández-Santamarıa.Controllability of a one-dimensional fractional heat equation: theoretical and numerical aspects, IMA J. Math. Control Inf., 36 (2019), 1199-1235.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献