Author:
Cresson Jacky,Jiménez Fernando,Ober-Blöbaum Sina
Abstract
<p style='text-indent:20px;'>We prove a Noether's theorem of the first kind for the so-called <i>restricted fractional Euler-Lagrange equations</i> and their discrete counterpart, introduced in [<xref ref-type="bibr" rid="b26">26</xref>,<xref ref-type="bibr" rid="b27">27</xref>], based in previous results [<xref ref-type="bibr" rid="b11">11</xref>,<xref ref-type="bibr" rid="b35">35</xref>]. Prior, we compare the restricted fractional calculus of variations to the <i>asymmetric fractional calculus of variations</i>, introduced in [<xref ref-type="bibr" rid="b14">14</xref>], and formulate the restricted calculus of variations using the <i>discrete embedding</i> approach [<xref ref-type="bibr" rid="b12">12</xref>,<xref ref-type="bibr" rid="b18">18</xref>]. The two theories are designed to provide a variational formulation of dissipative systems, and are based on modeling irreversbility by means of fractional derivatives. We explicit the role of time-reversed solutions and causality in the restricted fractional calculus of variations and we propose an alternative formulation. Finally, we implement our results for a particular example and provide simulations, actually showing the constant behaviour in time of the discrete conserved quantities outcoming the Noether's theorems.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Earth and Planetary Sciences,General Environmental Science,Applied Mathematics,Control and Optimization,Geometry and Topology,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献