Author:
Bursztyn Henrique,Cabrera Alejandro,del Hoyo Matias
Abstract
<p style='text-indent:20px;'>We introduce Poisson double algebroids, and the equivalent concept of double Lie bialgebroid, which arise as second-order infinitesimal counterparts of Poisson double groupoids. We develop their underlying Lie theory, showing how these objects are related by differentiation and integration. We use these results to revisit Lie 2-bialgebras by means of Poisson double structures.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Geometry and Topology,Mechanics of Materials,General Earth and Planetary Sciences,General Environmental Science
Reference42 articles.
1. D. Álvarez.Leaves of stacky Lie algebroids, Comptes Rendus. Mathématique, 358 (2020), 217-226.
2. D. Álvarez, Poisson groupoids and moduli spaces of flat bundles over surfaces, arXiv: 2106.11078.
3. J. C. Baez, A. S. Crans.Higher-dimensional algebra. Ⅵ. Lie 2-algebras, Theory Appl. Categ., 12 (2004), 492-538.
4. C. Bai, Y. Sheng, C. Zhu.Lie 2-bialgebras, Comm. Math. Phys., 320 (2013), 149-172.
5. R. Brown, K. C. H. Mackenzie.Determination of a double Lie groupoid by its core diagram, J. Pure Appl. Algebra, 80 (1992), 237-272.