Author:
Cahen Michel,Gutt Simone,Rawnsley John
Abstract
<p style='text-indent:20px;'>In this paper we look at the question of integrability, or not, of the two natural almost complex structures <inline-formula><tex-math id="M1">\begin{document}$ J^{\pm}_\nabla $\end{document}</tex-math></inline-formula> defined on the twistor space <inline-formula><tex-math id="M2">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula> of an even-dimensional manifold <inline-formula><tex-math id="M3">\begin{document}$ M $\end{document}</tex-math></inline-formula> with additional structures <inline-formula><tex-math id="M4">\begin{document}$ g $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \nabla $\end{document}</tex-math></inline-formula> a <inline-formula><tex-math id="M6">\begin{document}$ g $\end{document}</tex-math></inline-formula>-connection. We measure their non-integrability by the dimension of the span of the values of <inline-formula><tex-math id="M7">\begin{document}$ N^{J^\pm_\nabla} $\end{document}</tex-math></inline-formula>. We also look at the question of the compatibility of <inline-formula><tex-math id="M8">\begin{document}$ J^{\pm}_\nabla $\end{document}</tex-math></inline-formula> with a natural closed <inline-formula><tex-math id="M9">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-form <inline-formula><tex-math id="M10">\begin{document}$ \omega^{J(M, g, \nabla)} $\end{document}</tex-math></inline-formula> defined on <inline-formula><tex-math id="M11">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M12">\begin{document}$ (M, g) $\end{document}</tex-math></inline-formula> we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection <inline-formula><tex-math id="M13">\begin{document}$ \nabla $\end{document}</tex-math></inline-formula>. In all cases <inline-formula><tex-math id="M14">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula> is a bundle of complex structures on the tangent spaces of <inline-formula><tex-math id="M15">\begin{document}$ M $\end{document}</tex-math></inline-formula> compatible with <inline-formula><tex-math id="M16">\begin{document}$ g $\end{document}</tex-math></inline-formula>. In the case <inline-formula><tex-math id="M17">\begin{document}$ M $\end{document}</tex-math></inline-formula> is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Control and Optimization,Geometry and Topology,Mechanics of Materials,General Earth and Planetary Sciences,General Environmental Science
Reference14 articles.
1. M. F. Atiyah, N. J. Hitchin, I. M. Singer.Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. A, 362 (1978), 425-461.
2. M. Berger.Sur quelques variétés riemaniennes suffisamment pincées, Bulletin de la S.M.F., 88 (1960), 57-71.
3. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg, 1987.
4. M. Cahen, M. Gérard, S. Gutt and M. Hayyani, Distributions associated to almost complex structures on symplectic manifolds, preprint, arXiv: 2002.02335.
5. J. Eells, S. Salamon.Twistorial construction of harmonic maps of surfaces into four-manifolds, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, 12 (1985), 589-640.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献