On twistor almost complex structures

Author:

Cahen Michel,Gutt Simone,Rawnsley John

Abstract

<p style='text-indent:20px;'>In this paper we look at the question of integrability, or not, of the two natural almost complex structures <inline-formula><tex-math id="M1">\begin{document}$ J^{\pm}_\nabla $\end{document}</tex-math></inline-formula> defined on the twistor space <inline-formula><tex-math id="M2">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula> of an even-dimensional manifold <inline-formula><tex-math id="M3">\begin{document}$ M $\end{document}</tex-math></inline-formula> with additional structures <inline-formula><tex-math id="M4">\begin{document}$ g $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M5">\begin{document}$ \nabla $\end{document}</tex-math></inline-formula> a <inline-formula><tex-math id="M6">\begin{document}$ g $\end{document}</tex-math></inline-formula>-connection. We measure their non-integrability by the dimension of the span of the values of <inline-formula><tex-math id="M7">\begin{document}$ N^{J^\pm_\nabla} $\end{document}</tex-math></inline-formula>. We also look at the question of the compatibility of <inline-formula><tex-math id="M8">\begin{document}$ J^{\pm}_\nabla $\end{document}</tex-math></inline-formula> with a natural closed <inline-formula><tex-math id="M9">\begin{document}$ 2 $\end{document}</tex-math></inline-formula>-form <inline-formula><tex-math id="M10">\begin{document}$ \omega^{J(M, g, \nabla)} $\end{document}</tex-math></inline-formula> defined on <inline-formula><tex-math id="M11">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula>. For <inline-formula><tex-math id="M12">\begin{document}$ (M, g) $\end{document}</tex-math></inline-formula> we consider either a pseudo-Riemannian manifold, orientable or not, with the Levi Civita connection or a symplectic manifold with a given symplectic connection <inline-formula><tex-math id="M13">\begin{document}$ \nabla $\end{document}</tex-math></inline-formula>. In all cases <inline-formula><tex-math id="M14">\begin{document}$ J(M, g) $\end{document}</tex-math></inline-formula> is a bundle of complex structures on the tangent spaces of <inline-formula><tex-math id="M15">\begin{document}$ M $\end{document}</tex-math></inline-formula> compatible with <inline-formula><tex-math id="M16">\begin{document}$ g $\end{document}</tex-math></inline-formula>. In the case <inline-formula><tex-math id="M17">\begin{document}$ M $\end{document}</tex-math></inline-formula> is oriented we require the orientation of the complex structures to be the given one. In the symplectic case the complex structures are positive.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Control and Optimization,Geometry and Topology,Mechanics of Materials,General Earth and Planetary Sciences,General Environmental Science

Reference14 articles.

1. M. F. Atiyah, N. J. Hitchin, I. M. Singer.Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. A, 362 (1978), 425-461.

2. M. Berger.Sur quelques variétés riemaniennes suffisamment pincées, Bulletin de la S.M.F., 88 (1960), 57-71.

3. A. L. Besse, Einstein Manifolds, Springer-Verlag, Berlin–Heidelberg, 1987.

4. M. Cahen, M. Gérard, S. Gutt and M. Hayyani, Distributions associated to almost complex structures on symplectic manifolds, preprint, arXiv: 2002.02335.

5. J. Eells, S. Salamon.Twistorial construction of harmonic maps of surfaces into four-manifolds, Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Serie 4, 12 (1985), 589-640.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3