Phase mixing for solutions to 1D transport equation in a confining potential

Author:

Chaturvedi Sanchit,Luk Jonathan

Abstract

<p style='text-indent:20px;'>Consider the linear transport equation in 1D under an external confining potential <inline-formula><tex-math id="M1">\begin{document}$ \Phi $\end{document}</tex-math></inline-formula>:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M2">\begin{document}$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $\end{document}</tex-math></inline-formula> (with <inline-formula><tex-math id="M3">\begin{document}$ \varepsilon &gt;0 $\end{document}</tex-math></inline-formula> small), we prove phase mixing and quantitative decay estimates for <inline-formula><tex-math id="M4">\begin{document}$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $\end{document}</tex-math></inline-formula>, with an inverse polynomial decay rate <inline-formula><tex-math id="M5">\begin{document}$ O({\langle} t{\rangle}^{-2}) $\end{document}</tex-math></inline-formula>. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in <inline-formula><tex-math id="M6">\begin{document}$ 1 $\end{document}</tex-math></inline-formula>D under the external potential <inline-formula><tex-math id="M7">\begin{document}$ \Phi $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Modeling and Simulation,Numerical Analysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical experiments on stationary, oscillating, and damped spherical galaxy models;Physica D: Nonlinear Phenomena;2024-12

2. Phase Space Mixing of a Vlasov Gas in the Exterior of a Kerr Black Hole;Communications in Mathematical Physics;2024-04

3. Small Data Solutions for the Vlasov–Poisson System with a Repulsive Potential;Communications in Mathematical Physics;2024-03

4. Mixing in anharmonic potential well;Journal of Mathematical Physics;2022-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3