Affiliation:
1. CMLS, Ecole polytechnique, 91128 Palaiseau cedex, Paris, France
Abstract
<p style='text-indent:20px;'>This paper studies the regularity of Villani solutions of the space homogeneous Landau equation with Coulomb interaction in dimension 3. Specifically, we prove that any such solution belonging to the Lebesgue space <inline-formula><tex-math id="M1">\begin{document}$ L_{t}^{\infty}L_{v}^{q} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M2">\begin{document}$ q>3 $\end{document}</tex-math></inline-formula> in an open cylinder <inline-formula><tex-math id="M3">\begin{document}$ (0,S)\times B $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M4">\begin{document}$ B $\end{document}</tex-math></inline-formula> is an open ball of <inline-formula><tex-math id="M5">\begin{document}$ \mathbb{R}^{3} $\end{document}</tex-math></inline-formula>, must have Hölder continuous second order derivatives in the velocity variables, and first order derivative in the time variable locally in any compact subset of that cylinder.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献