Author:
Dong Hongjie,Guo Yan,Yastrzhembskiy Timur
Abstract
<p style='text-indent:20px;'>We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the <inline-formula><tex-math id="M1">\begin{document}$ S_p $\end{document}</tex-math></inline-formula> estimate of [<xref ref-type="bibr" rid="b7">7</xref>], we prove regularity in the kinetic Sobolev spaces <inline-formula><tex-math id="M2">\begin{document}$ S_p $\end{document}</tex-math></inline-formula> and anisotropic Hölder spaces for such weak solutions. Such <inline-formula><tex-math id="M3">\begin{document}$ S_p $\end{document}</tex-math></inline-formula> regularity leads to the uniqueness of weak solutions.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference22 articles.
1. D. Albritton, S. Armstrong, J.-C. Mourrat and M. Novack, Variational methods for the kinetic Fokker-Planck equation, arXiv: 1902.04037.
2. R. Beals, V. Protopopescu.Abstract time-dependent transport equations, J. Math. Anal. Appl., 121 (1987), 370-405.
3. M. Bramanti, M.C. Cerutti, M. Manfredini, $L^p$ estimates for some ultraparabolic operators with discontinuous coefficients, J. Math. Anal. Appl., 200 (1996), no. 2,332–354.
4. M. Bramanti, G. Cupini, E. Lanconelli, E. Priola, Global $L^p$ estimates for degenerate Ornstein-Uhlenbeck operators with variable coefficients., Math. Nachr., 286 (2013), no. 11-12, 1087–1101.
5. H. Dong, Timur Yastrzhembskiy, Global $L_p$ estimates for kinetic Kolmogorov-Fokker-Planck equations in divergence form, in preparation.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献