A moment closure based on a projection on the boundary of the realizability domain: Extension and analysis

Author:

Pichard Teddy1

Affiliation:

1. CMAP, École Polytechnique, CNRS UMR7641, Institut Polytechnique de Paris, Route de Saclay, Palaiseau, 91128, France

Abstract

<p style='text-indent:20px;'>A closure relation for moments equations in kinetic theory was recently introduced in [<xref ref-type="bibr" rid="b38">38</xref>], based on the study of the geometry of the set of moments. This relation was constructed from a projection of a moment vector toward the boundary of the set of moments and corresponds to approximating the underlying kinetic distribution as a sum of a chosen equilibrium distribution plus a sum of purely anisotropic Dirac distributions.</p><p style='text-indent:20px;'>The present work generalizes this construction for kinetic equations involving unbounded velocities, i.e. to the Hamburger problem, and provides a deeper analysis of the resulting moment system. Especially, we provide representation results for moment vectors along the boundary of the moment set that implies the well-definition of the model. And the resulting moment model is shown to be weakly hyperbolic with peculiar properties of hyperbolicity and entropy of two subsystems, corresponding respectively to the equilibrium and to the purely anisotropic parts of the underlying kinetic distribution.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Modeling and Simulation,Numerical Analysis

Reference47 articles.

1. M. Abdel Malik, Adaptive Algorithms for Optimal Multiscale Model Hierarchies of the Boltzmann Equation: Galerkin Methods for Kinetic Theory, PhD thesis, Mechanical Engineering, May 2017.

2. M. Abdel Malik, H. van Brummelen.Moment closure approximations of the boltzmann equation based on φ-divergences, J. Stat. Phys., 164 (2016), 77-104.

3. N. I. Akhiezer, The Classical Moment Problem, Edinburgh : Oliver & Boyd, 1965.

4. G. W. Alldredge, Optimization Techniques for Entropy-Based Moment Models of LinearTransport, PhD thesis, University of Maryland, 2012.

5. G. W. Alldredge, C. D. Hauck, A. L. Tits.High-order entropy-based closures for linear transport in slab geometry Ⅱ: A computational study of the optimization problem, SIAM J. Sci. Comput., 34 (2012), 361-391.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3