Affiliation:
1. YMSC, Tsinghua University, China
Abstract
<p style='text-indent:20px;'>We study the small data global regularity problem of the <inline-formula><tex-math id="M2">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> Vlasov-Poisson system for both the relativistic case and the non-relativistic case. The main goal of this paper is twofold. (i) Based on a Fourier method, which works systematically for both the relativistic case and the non-relativistic case, we give a short proof for the global regularity and the sharp decay estimate for the <inline-formula><tex-math id="M3">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> Vlasov-Poisson system. Moreover, we show that the nonlinear solution scatters to a linear solution in both cases. The result of sharp decay estimates for the non-relativistic case is not new, see Hwang-Rendall-Velázquez [<xref ref-type="bibr" rid="b9">9</xref>] and Smulevici [<xref ref-type="bibr" rid="b23">23</xref>]. (ii) The Fourier method presented in this paper serves as a good comparison for the study of more complicated <inline-formula><tex-math id="M4">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> relativistic Vlasov-Nordström system in [<xref ref-type="bibr" rid="b24">24</xref>] and <inline-formula><tex-math id="M5">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> relativistic Vlasov-Maxwell system in [<xref ref-type="bibr" rid="b25">25</xref>].</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献