On solutions of Vlasov-Poisson-Landau equations for slowly varying in space initial data

Author:

Bobylev Alexander1,Potapenko Irina1

Affiliation:

1. KIAM, Miusskaya Pl., 4, Moscow 125047, RF

Abstract

<p style='text-indent:20px;'>The paper is devoted to analytical and numerical study of solutions to the Vlasov-Poisson-Landau kinetic equations (VPLE) for distribution functions with typical length <inline-formula><tex-math id="M1">\begin{document}$ L $\end{document}</tex-math></inline-formula> such that <inline-formula><tex-math id="M2">\begin{document}$ \varepsilon = r_D/L &lt;&lt; 1 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M3">\begin{document}$ r_D $\end{document}</tex-math></inline-formula> stands for the Debye radius. It is also assumed that the Knudsen number <inline-formula><tex-math id="M4">\begin{document}$ \mathrm{K\!n} = l/L = O(1) $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M5">\begin{document}$ l $\end{document}</tex-math></inline-formula> denotes the mean free pass of electrons. We use the standard model of plasma of electrons with a spatially homogeneous neutralizing background of infinitely heavy ions. The initial data is always assumed to be close to neutral. We study an asymptotic behavior of the system for small <inline-formula><tex-math id="M6">\begin{document}$ \varepsilon &gt; 0 $\end{document}</tex-math></inline-formula>. It is known that the formal limit of VPLE at <inline-formula><tex-math id="M7">\begin{document}$ \varepsilon = 0 $\end{document}</tex-math></inline-formula> does not describe a rapidly oscillating part of the electrical field. Our aim is to fill this gap and to study the behavior of the "true" electrical field near this limit. We show that, in the problem with standard isotropic in velocities Maxwellian initial conditions, there is almost no damping of these oscillations in the collisionless case. An approximate formula for the electrical field is derived and then confirmed numerically by using a simplified BGK-type model of VPLE. Another class of initial conditions that leads to strong oscillations having the amplitude of order <inline-formula><tex-math id="M8">\begin{document}$ O(1/\varepsilon ) $\end{document}</tex-math></inline-formula> is considered. A formal asymptotic expansion of solution in powers of <inline-formula><tex-math id="M9">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> is constructed. Numerical solutions of that class are studied for different values of parameters <inline-formula><tex-math id="M10">\begin{document}$ \varepsilon $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M11">\begin{document}$ \mathrm{K\!n} $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Modeling and Simulation,Numerical Analysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3