Abstract
<p style='text-indent:20px;'>In this note, we propose a slightly different proof of Gallavotti's theorem ["Statistical Mechanics: A Short Treatise", Springer, 1999, pp. 48-55] on the derivation of the linear Boltzmann equation for the Lorentz gas with a Poisson distribution of obstacles in the Boltzmann-Grad limit.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference19 articles.
1. V. Agoshkov, Boundary Value Problems for Transport Equations, Birkhäuser, Boston, 1998.
2. C. Bardos.Problèmes aux limites pour les équations aux dérivées partielles du premier ordre à coefficients réels; théorèmes d'approximation; application à l'équation de transport, Ann. Scient. École Normale Sup., 3 (1970), 185-233.
3. C. Boldrighini, L. A. Bunimovich, Ya. G. Sinai.On the Boltzmann equation for the Lorentz gas, J. Stat. Phys., 32 (1983), 477-501.
4. C. Cercignani, R. Illner and M. Pulvirenti, The Mathematical Theory of Dilute Gases, Springer Science+Business Media, New York, 1994.
5. D. J. Daley and D. Vere-Jones, An Introduction to the Theory of Point Processes. Vol. I: Elementary Theory and Methods, 2$^nd$ edition, Springer-Verlag, New York, Berlin, Heidelberg, 2003.