Affiliation:
1. Vienna University of Technology, Institute of Analysis and Scientific Computing, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria
Abstract
<p style='text-indent:20px;'>This paper is concerned with finding Fokker-Planck equations in <inline-formula><tex-math id="M1">\begin{document}$ \mathbb{R}^d $\end{document}</tex-math></inline-formula> with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.</p><p style='text-indent:20px;'>Such an "optimal" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an <inline-formula><tex-math id="M2">\begin{document}$ L^2 $\end{document}</tex-math></inline-formula>–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Modeling and Simulation,Numerical Analysis
Reference13 articles.
1. F. Achleitner, A. Arnold, E. A. Carlen.On multi-dimensional hypocoercive BGK models,, Kinet. Relat. Models, 11 (2018), 953-1009.
2. F. Achleitner, A. Arnold and B. Signorello, On optimal decay estimates for ODEs and PDEs with modal decomposition, Stochastic Dynamics out of Equilibrium, Springer Proceedings in Mathematics and Statistics, 282 (2019), 241–264.
3. A. Arnold, P. A. Markowich, G. Toscani, A. Unterreiter.On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. PDE, 26 (2001), 43-100.
4. A. Arnold, C. Schmeiser and B. Signorello, Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift, Comm. Math. Sc. (2022). Available from: https://arXiv.org/abs/2003.01405.
5. A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, preprint, https://arXiv.org/abs/1409.5425.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献