Nonexistence of Positive Solutions for high-order Hardy-H$ \acute{e} $non Systems on $ \mathbb{R}^{n} $

Author:

Zhang Rong1

Affiliation:

1. School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

Abstract

<p style='text-indent:20px;'>In this paper, we study the following high-order Hardy-H<inline-formula><tex-math id="M3">\begin{document}$ \acute{e} $\end{document}</tex-math></inline-formula>non type system:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{cases} \ (-\Delta)^{\frac{\alpha}{2}}u(x) = |x|^{a}v^{p}(x) ,\\ \ (-\Delta)^{\frac{\beta}{2}}v(x) = |x|^{b}u^{q}(x) ,\\ \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M4">\begin{document}$ 0&lt;\alpha = s_{1}+2&lt;n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ 0&lt;\beta = s_{2}+2&lt;n $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ 0&lt;s_{1},s_{2}&lt;2 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ a&gt;-s_{1} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M8">\begin{document}$ b&gt;-s_{2} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M9">\begin{document}$ p,q&gt;0 $\end{document}</tex-math></inline-formula>. There are two cases to be considered. The first one is where the domain is the whole space <inline-formula><tex-math id="M10">\begin{document}$ \mathbb{R}^{n} $\end{document}</tex-math></inline-formula>, and the second one is where the domain is bounded. First of all, we consider the above system in the whole space <inline-formula><tex-math id="M11">\begin{document}$ \mathbb{R}^{n} $\end{document}</tex-math></inline-formula>, we show that the above system are equivalent to the integral system:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{cases} \ u(x) = \int_{\mathbb{R}^{n}}\frac{|y|^{a}v^{p}(y)}{|x-y|^{n-\alpha}}dy,\\[1.5mm] \ v(x) = \int_{\mathbb{R}^{n}}\frac{|y|^{b}u^{q}(y)}{|x-y|^{n-\beta}}dy.\\ \end{cases} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>Then by using the method of moving planes in integral forms, we prove that there are no positive solutions for the above integral system. In addition, while in the subcritical case <inline-formula><tex-math id="M12">\begin{document}$ 1&lt;p&lt;\frac{n+\alpha+2a}{n-\alpha} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M13">\begin{document}$ 1&lt;q&lt;\frac{n+\alpha+2b}{n-\alpha} $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M14">\begin{document}$ \alpha = \beta $\end{document}</tex-math></inline-formula> in the above elliptic system, we prove the nonexistence of a positive solution for the above system in <inline-formula><tex-math id="M15">\begin{document}$ \mathbb{R}^{n} $\end{document}</tex-math></inline-formula>. Then, through the <inline-formula><tex-math id="M16">\begin{document}$ Doubling\ Lemma $\end{document}</tex-math></inline-formula> we obtain the singularity estimates of the positive solutions on a bounded domain <inline-formula><tex-math id="M17">\begin{document}$ \Omega $\end{document}</tex-math></inline-formula>.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3