On the solvability of a semilinear higher-order elliptic problem for the vector field method in image registration

Author:

Zheng Xiaojun1,Huan Zhongdan2,Liu Jun2

Affiliation:

1. Elementary Education School, Hainan Normal University, Haikou 571158, China

2. School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China

Abstract

<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal{L}v(t, \cdot) = F_{S, T}\circ G(v)(t, \cdot), \quad \forall t\in [0, \tau], $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M5">\begin{document}$ F_{S, T} $\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id="M6">\begin{document}$ S $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ T $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M8">\begin{document}$ G(v)(t, x) $\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id="M9">\begin{document}$ y^v(s;t, x) $\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id="M10">\begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3