Affiliation:
1. Elementary Education School, Hainan Normal University, Haikou 571158, China
2. School of Mathematical Sciences, Laboratory of Mathematics and Complex Systems, Beijing Normal University, Beijing 100875, China
Abstract
<p style='text-indent:20px;'>We study the existence of the solution to a semilinear higher-order elliptic system</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \mathcal{L}v(t, \cdot) = F_{S, T}\circ G(v)(t, \cdot), \quad \forall t\in [0, \tau], $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>with the homogeneous Dirichlet boundary conditions. Here, <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{L} = (-\Delta)^m $\end{document}</tex-math></inline-formula> is a harmonic operator of order <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ v = v(t, x):[0, \tau]\times\Omega\rightarrow \mathbb{R}^n $\end{document}</tex-math></inline-formula> is the unknown, <inline-formula><tex-math id="M4">\begin{document}$ t $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M5">\begin{document}$ F_{S, T} $\end{document}</tex-math></inline-formula> is a function related to given functions <inline-formula><tex-math id="M6">\begin{document}$ S $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M7">\begin{document}$ T $\end{document}</tex-math></inline-formula>, and <inline-formula><tex-math id="M8">\begin{document}$ G(v)(t, x) $\end{document}</tex-math></inline-formula> is defined by the solution <inline-formula><tex-math id="M9">\begin{document}$ y^v(s;t, x) $\end{document}</tex-math></inline-formula> of an ODE-IVP <inline-formula><tex-math id="M10">\begin{document}$ {\rm d}y/\mathrm{d}s = v(s, y), \quad y(t) = x $\end{document}</tex-math></inline-formula>. The elliptic equations is the Euler-Lagrange equation of the vector field regularization model widely used in image registration. Although we have showed the existence of a solution to this BVP by the variational method, we hope to study it by the fixed point method further. This is mainly because the elliptic equations is novel in form, and the method here put more emphasis on the quantitative analysis whereas the variational method focus on the qualitative analysis. Since the system here is a higher order semilinear system, and its nonlinear term is dominated by an exponential function with respect to the unknown, we use an exponential inequality to construct a closed ball, and then apply the Schauder fixed point theorem to show the existence of a solution under some assumptions.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference24 articles.
1. S. Arguill$\grave{e}$re and E. Tr$\acute{e}$lat, Sub-Riemannian structures on groups of diffeomorphisms, J. Inst. Math. Jussieu, 2014.
2. V.I. Arnold, Ordinary Differerntial Equations, Springer-Verlag, Berlin, 1992.
3. A. Bahrouni.Trudinger-Moser type inequality and existence of solution for perturbed non-local elliptic operators with exponential nonlinearity, Commun. Pure Appl. Anal., 16 (2017), 243-252.
4. J. Bao, N. Lam, G. Lu.Polyharmonic equations with critical exponential growth in the whole space $\mathbb{R}^N$, Discrete Contin. Dyn. Syst., 36 (2016), 577-600.
5. M.F. Beg, M.I. Miller, A. Trouv$\acute{e}$, L. Younes.Computing large deformation metric mappings via geodesic flows of diffeomorphisms, Int. J. Comput. Vision, 61 (2005), 139-157.