Author:
El Hajj Ahmad,Oussaily Aya
Abstract
<p style='text-indent:20px;'>In this work, we are dealing with a non-linear eikonal system in one dimensional space that describes the evolution of interfaces moving with non-signed strongly coupled velocities. We prove a global existence result in the framework of continuous viscosity solution. The approach is made by adding a viscosity term and passing to the limit for vanishing viscosity, relying on a new gradient entropy and <inline-formula><tex-math id="M1">\begin{document}$ BV $\end{document}</tex-math></inline-formula> estimates. A uniqueness result is also proved through a comparison principle property.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference24 articles.
1. R. A. Adams., Sobolev Spaces, ${ref.volume} (1975).
2. M. Al Zohbi, A. El Hajj and M. Jazar, Global existence to a diagonal hyperbolic system for any bv initial data, to appear in Nonlinearity, 2021.
3. M. Bardi and I. Capuzzo-Dolcetta, Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, in Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1997. With appendices by Maurizio Falcone and Pierpaolo Soravia.
4. (Berlin) G. Barles, Solutions de viscosité des équations de Hamilton-Jacobi, in Mathématiques & Applications, Springer-Verlag, Paris, 1994.
5. S. Bianchini, A. Bressan.Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献