A convergent finite difference method for computing minimal Lagrangian graphs

Author:

Hamfeldt Brittany Froese,Lesniewski Jacob

Abstract

<p style='text-indent:20px;'>We consider the numerical construction of minimal Lagrangian graphs, which is related to recent applications in materials science, molecular engineering, and theoretical physics. It is known that this problem can be formulated as an additive eigenvalue problem for a fully nonlinear elliptic partial differential equation. We introduce and implement a two-step generalized finite difference method, which we prove converges to the solution of the eigenvalue problem. Numerical experiments validate this approach in a range of challenging settings. We further discuss the generalization of this new framework to Monge-Ampère type equations arising in optimal transport. This approach holds great promise for applications where the data does not naturally satisfy the mass balance condition, and for the design of numerical methods with improved stability properties.</p>

Publisher

American Institute of Mathematical Sciences (AIMS)

Subject

Applied Mathematics,Analysis,General Medicine

Reference35 articles.

1. G. Barles, P. E. Souganidis.Convergence of approximation schemes for fully nonlinear second order equations, Asym. Anal., 4 (1991), 271-283.

2. P. W. Bates, G. W. Wei, S. Zhao.Minimal molecular surfaces and their applications, J. Comp. Chem., 29 (2008), 380-391.

3. J. D. Benamou, B. D. Froese, A. M. Oberman.Numerical solution of the optimal transportation problem using the Monge-Ampère equation, J. Comput. Phys., 260 (2014), 107-126.

4. J. D. Benamou, A. Oberman and B. Froese, Numerical solution of the second boundary value problem for the elliptic Monge-Ampère equation, Inst. Nation. Recherche Inform. Automat., 2012, 37 pp.

5. D. P. Bertsekas, Convex Analysis and Optimization, Athena Scientific, Belmont, MA, 2003.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3