Abstract
<p style="text-indent:20px;">This paper studies the uniqueness of steady 1-D shock solutions in a finite flat nozzle via vanishing viscosity arguments. It is proved that, for both barotropic gases and non-isentropic gases, the steady viscous shock solutions converge under the <inline-formula><tex-math id="M1">\begin{document}$ \mathcal{L}^{1} $\end{document}</tex-math></inline-formula> norm. Hence only one shock solution of the inviscid Euler system could be the limit as the viscosity coefficient goes to <inline-formula><tex-math id="M2">\begin{document}$ 0 $\end{document}</tex-math></inline-formula>, which shows the uniqueness of the steady 1-D shock solution in a finite flat nozzle. Moreover, the position of the shock front for the limit shock solution is also obtained.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
General Medicine,Applied Mathematics,Analysis
Reference24 articles.
1. B. Barker, B. Melinand and K. Zumbrun, Existence and stability of steady noncharacteristic solutions on a finite interval of full compressible Navier-Stokes equations, preprint, arXiv: 1911.06691.
2. S. Bianchini, A. Bressan.Vanishing viscosity solutions of nonlinear hyperbolic systems, Ann. Math., 161 (2005), 223-342.
3. G. Q. Chen, J. Chen, K. Song.Transonic nozzle flows and free boundary problems for the full Euler equations, J. Differ. Equ., 229 (2006), 92-120.
4. G. Q. Chen, M. Feldman.Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type, J. Amer. Math. Soc., 16 (2003), 461-494.
5. G. Q. Chen, H. Yuan.Local uniqueness of steady spherical transonic shock-fronts for the three-dimensional full Euler equations, Commun. Pure Appl. Anal., 12 (2013), 2515-2542.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献