Abstract
<p style='text-indent:20px;'>The main goal of this paper is to study the asymptotic behavior of a coupled Klein-Gordon-Schrödinger system in three dimensional unbounded domain. We prove the existence of a global attractor of the systems of the nonlinear Klein-Gordon-Schrödinger (KGS) equations in <inline-formula><tex-math id="M2">\begin{document}$ H^1({\mathbb R}^3)\times H^1({\mathbb R}^3)\times L^2({\mathbb R}^3) $\end{document}</tex-math></inline-formula> and more particularly that this attractor is in fact a compact set of <inline-formula><tex-math id="M3">\begin{document}$ H^2({\mathbb R}^3)\times H^2({\mathbb R}^3)\times H^1({\mathbb R}^3) $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference22 articles.
1. M. Abounouh, O. Goubet, A. Hakim.Regularity of the attractor for a coupled Klein-Gordon-Schrödinger system, Differ. Integral Equ., 16 (2003), 573-581.
2. B. Alouini.Finite dimensional global attractor for a Bose-Einstein equation in a two dimensional unbounded domain, Commun. Pure Appl. Anal., 10 (2015), 1781-1801.
3. A. Bachelot.Problème de Cauchy pour des systèmes hyperboliques semi-linéaires, Ann. Inst. H. Poincaré Anal. Non Lináires, 1 (1984), 453-478.
4. P. Biler.Attractors for the system of Schrödinger and Klein-Gordon equations with Yukawa coupling, SIAM J. Math. Anal., 21 (1990), 1190-1212.
5. M. M. Cavalcanti and V. N. Domingos Cavalcanti, Global existence and uniform decay for the coupled Klein-Gordon-Schrödinger equations, Nonlinear Differ. Equ. Appl., 7 (2000), 285–307. Birkhäuser Verlag, Basel, 2000
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献