Affiliation:
1. School of Mathematics and Statistics, Guizhou University of Finance and Economics, Guiyang, 550025, China
2. School of Mathematics and Statistics, Hubei Key Laboratory of Mathematical Sciences, Central China Normal University, Wuhan, 430079, China
Abstract
<p style='text-indent:20px;'>This paper deals with the following fractional magnetic Schrödinger equations</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \varepsilon^{2s}(-\Delta)^s_{A/\varepsilon} u +V(x)u = |u|^{p-2}u, \ x\in{\mathbb R}^N, $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>where <inline-formula><tex-math id="M1">\begin{document}$ \varepsilon>0 $\end{document}</tex-math></inline-formula> is a parameter, <inline-formula><tex-math id="M2">\begin{document}$ s\in(0,1) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M3">\begin{document}$ N\geq3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ 2+2s/(N-2s)<p<2_s^*: = 2N/(N-2s) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ A\in C^{0,\alpha}({\mathbb R}^N,{\mathbb R}^N) $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M6">\begin{document}$ \alpha\in(0,1] $\end{document}</tex-math></inline-formula> is a magnetic field, <inline-formula><tex-math id="M7">\begin{document}$ V:{\mathbb R}^N\to{\mathbb R} $\end{document}</tex-math></inline-formula> is a nonnegative continuous potential. By variational methods and penalized idea, we show that the problem has a family of solutions concentrating at a local minimum of <inline-formula><tex-math id="M8">\begin{document}$ V $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M9">\begin{document}$ \varepsilon\to 0 $\end{document}</tex-math></inline-formula>. There is no restriction on the decay rates of <inline-formula><tex-math id="M10">\begin{document}$ V $\end{document}</tex-math></inline-formula>. Especially, <inline-formula><tex-math id="M11">\begin{document}$ V $\end{document}</tex-math></inline-formula> can be compactly supported. The appearance of <inline-formula><tex-math id="M12">\begin{document}$ A $\end{document}</tex-math></inline-formula> and the nonlocal of <inline-formula><tex-math id="M13">\begin{document}$ (-\Delta)^s $\end{document}</tex-math></inline-formula> makes the proof more difficult than that in [<xref ref-type="bibr" rid="b7">7</xref>], which considered the case <inline-formula><tex-math id="M14">\begin{document}$ A\equiv 0 $\end{document}</tex-math></inline-formula>.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine