Abstract
<p style='text-indent:20px;'>We study a kinetic-fluid model in a <inline-formula><tex-math id="M1">\begin{document}$ 3D $\end{document}</tex-math></inline-formula> bounded domain. More precisely, this model is a coupling of the Vlasov-Fokker-Planck equation with the local alignment force and the compressible Navier-Stokes equations with nonhomogeneous Dirichlet boundary condition. We prove the global existence of weak solutions to it for the isentropic fluid (adiabatic coefficient <inline-formula><tex-math id="M2">\begin{document}$ \gamma> 3/2 $\end{document}</tex-math></inline-formula>) and hence extend the existence result of Choi and Jung [Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain, arXiv: 1912.13134v2], where the velocity of the fluid is supplemented with homogeneous Dirichlet boundary condition.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献