Author:
Huy Nguyen Thieu,Xuan Pham Truong,Ha Vu Thi Ngoc,Ha Vu Thi Thuy
Abstract
<p style='text-indent:20px;'>We study the existence of an inertial manifold for the solutions to fully non-autonomous parabolic differential equation of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \dfrac{du}{dt} + A(t)u(t) = f(t,u),\, t> s. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>We prove the existence of such an inertial manifold in the case that the family of linear partial differential operators <inline-formula><tex-math id="M1">\begin{document}$ (A(t))_{t\in { \mathbb {R}}} $\end{document}</tex-math></inline-formula> generates an evolution family <inline-formula><tex-math id="M2">\begin{document}$ (U(t,s))_{t\ge s} $\end{document}</tex-math></inline-formula> satisfying certain dichotomy estimates, and the nonlinear forcing term <inline-formula><tex-math id="M3">\begin{document}$ f(t,x) $\end{document}</tex-math></inline-formula> satisfies the Lipschitz condition such that certain dichotomy gap condition holds.</p>
Publisher
American Institute of Mathematical Sciences (AIMS)
Subject
Applied Mathematics,Analysis,General Medicine
Reference25 articles.
1. P. Acquistapace, B. Terreni.A unified approach to abstract linear nonautonomous parabolic equations, Rend. Sem. Mat. Univ. Padova, 78 (1987), 47-107.
2. P. Acquistapace.Evolution operators and strong solutions of abstract linear parabolic equations, Differ. Integral Equ., 1 (1988), 433-457.
3. I. D. Chueshov, M. Scheutzow.Inertial manifolds and forms for stochastically perturbed retarded semilinear parabolic equations, J. Dynam. Differ. Equ., 13 (2001), 355-380.
4. P. Constantin, C. Foias, B. Nicolaenko and R. Temam, Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations, Springer, 1989.
5. A. Debussche, R. Temam.Inertial manifolds and the slow manifolds in meteorology, Differ. Integral Equ., 4 (1991), 897-931.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献